整除和素数素数(又叫质数)
我们在计算这些除数对时,会遇到一些只有第一对除数的数。一个例子是 13 – 它只有 除数1和13自己。这些特殊的数被称为__素数__. 它们不能被拆成两个稍小的数的乘积。 某种程度上,它们成了“原子数”。
注意 1 自身 不是 一个素数, 所以首批的一些素数是 2, 3, 5, 7, 11, 13, …
任意不是素数的数都能被写成素数的乘积形式:我们只要不断的把它分解成更多的部分直到所有 因子都是素数。例如,
84 | ||||||||
2 | × | 42 | ||||||
2 | × | 21 | ||||||
3 | × | 7 | ||||||
84 | = | 2 | × | 2 | × | 3 | × | 7 |
现在 2, 3 和 7 是素数而且不能再被分解了。2 × 2 × 3 × 7 被称为84的 质因式, 同时 2, 3 和 7 是它的 质因子. 注意一些素数,比如这里的2,可以在一个质因式 里出现多次。
每个整数都有一个质因式,但是没有两个数的质因式是一样的。更进一步,任意整数 都只有一种质因式写法 – 除非我们把素数不同顺序算成不同写法。这就是 算术基本定理(FTA-Fundamental Theorem of Arithmetic).
利用算术基本定理能够使许多数学问题变得简单多了: 我们做多个数的质因数分解时,我们先独立 分解一个个数来解决问题,这样通常会简单很多,然后把这些结果组合起来从而解决原来 的问题。
埃拉托色尼筛选法
结果, 很难确定一个数是否是素数: 你总是必须找到它 全部 的质因数, 随着数变大 而变得越难确定。 然而,希腊数学家 -
现在我们可以数数了,总共有
有多少个素数?
当然我们能够用埃氏素数筛选法找更大的数素。在100到200间有21个素数, 200到300间 有16个素数,在400到500间有17个素数,而且10000到10100间只有11个。
素数看起来在不断的分散了,但是它们会终止吗? 存在一个 最大 或 最后 的素数吗?
古希腊数学家
- 假设只有有限多个素数。P, P, P, P, P
- 让我们把它们全部相乘,得到一个非常大的数,我们把它称为N.N = P × P × P × P × P
- 现在我们思考下N + 1. 任何整除N的素数都不能整除N + 1. 而且因为所有整除N的素数都已经被找到了, 它们中也不存在能够整除N + 1的.P, P, P, P,PNP, P, P, P,PN + 1
- 根据
算术基本定理 我们知道N + 1必定有个质因数P’, 它不是N + 1自身,也不是其它新的能够整除N + 1的素数。P’ N + 1 - 在这两种情况下,我们找到了一个新的素数它却不在我们的原始列表中,但我们又假设了所有素数都在这个列表中。
- 显然出了什么问题!但是从步骤2–4都是绝对有效的,唯一的可能性是我们在步骤1中的初始假设是错误的。这意味着一定有无穷多个的素数。
欧几里得的解释是历史上第一个正式数学__证明__的例子 — 表明一个陈述一定是正确的 逻辑论证。这个例子通常被称为__反证法__:我们从一个假设开始,推断出一些不可能的事情,从而知道我们的假设一定是错误的。